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Abstract: This article is an approach of the forced steady-state vibrations of the nonlinear
mechanical elastic systems with polynomial damping. The damping coefficient has a
polynomial variation function of velocity. The differential equation of the movements of the
non-linear 1DOF system can be solved only using numerical method, e.g. a programme based
on the algorithm Runge-Kutta IV for the numerical integration. The study introduce two
quantitative indexes of nonlinearity, the nonlinearity index of spectral amplitudes and the
nonlinearity index of spectral power, in order to indicate how much is the nonlinearity of the
system.
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Rezumat: Lucrarea propune un studiu al vibratiilor fortate a sistemelor mecanice elastice
neliniare cu amortizare vascoasa polinomiald. Coeficientul de amortizare are o variatie
polinomiald functie de viteza. Ecuatia diferentiald a vibratiilor fortate ale sistemului neliniar
cu un grad de libertate poate fi rezolvatda numai folosind o metodd numerica de integrare
numericd, de exemplu un program bazat pe algoritmul Runge-Kutta de ordinul IV. Studiul
introduce doi indici cantitativi de evaluare a neliniaritatii miscarii §i anume: indicele de
neliniaritate al amplitudinilor spectrale si indicele de neliniaritate al puterii spectralei.
Cuvinte cheie: sistem mecanic neliniar, 1DOF, amortizare polinomiald, index de neliniaritate

1. INTRODUCTION. MATHEMATICAL MODEL OF POLYNOMIAL
DAMPING

The usual dynamics approaches of vibrating machines and equipment consider that the

mechanical system (finite DOF with) has discrete components (masses, dampers and elastic
springs with linear behavior [1] [2] [3] [4] [5] [6] [7]- But, there are a lot of situations, when
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the linear/linearized model of the vibrating systems cannot explain some resonance
phenomena at the superior or inferior frequencies than the driving vibrator frequency or the
necessity to supercharge the motor of the vibrator. In this case, a model of the system with
nonlinear elasticity and/or damping can lead to some theoretical results more accurate [8] [9].

Physical and mathematical modeling of linear elastic mechanical systems leads to the
second order differential equations, linear, with constant coefficients. These equations which
model with small enough errors the dynamic behavior of the system are the result of
simplifying assumptions involving structural and geometric linearity of the mass/inertia,
elasticity and damping [10] [11].

Nonlinear differential equation of an autonomous 1DOF mechanical system has the
general form [12]

a(¢.q)i+b(d.q)q+c(g.q)g=F(t) , (1)

where: g/ ¢/ § are generalized coordinate/velocity/acceleration

a(g,q) - inertial coefficient

b(q,q) - damping coefficient

c(q,q) - elasticity coefficient

In most cases, the nonlinear mechanical elastic systems have constant inertial
characteristics (mass, moments of inertia), nonlinear behavior being given by dissipative and
elastic elements [13]. In general, nonlinearities of elasticity occurs in elastic-force strain
relationship and the relationship between strain rate and dissipative force resistance element
requires linear or nonlinear damping behavior [14] [15] [16] [17]. Under these conditions,
damping coefficient is a function of speed and stiffness coefficient is a function of elongation
nonlinear and the differential equation system has the form [18] [19] [20]:

aij+b(g)q+clglg=F(1) , )

For a mechanical elastic IDOF system with nonlinear damping only, the differential
equation of forced vibration is as follows:

ag+b(g)g+cq=F(t) 3)

For the technical and technological mechanical systems, the dissipative nonlinear
behavior is determined by the connecting elements made from neoprene, hydraulic and hydro-
pneumatic shock absorbers or by the interaction between the work equipment and
environment.

2. 1DOF MECHANICAL ELASTIC SYSTEM WITH POLYNOMIAL
DAMPING. PHYSICAL MODEL

Figure 1 shows the simplified model of an inertial vibrator conveyor, with the next
notations: 1 — the sieve, 2 — the transporter basis, 3 — the elastic support system (steel bending
plates), 4 — the inertial vibrator (where m,) is the total unbalanced mass).

Figure 2 shows the model of the conveyor driven by an inertial vibrator with two
eccentric synchronized masses [21] [22]. It has to specify that the model from the figure 2 is
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the vertical plane projection of the real model from figure 1. The used notations are:
C — the mass center of the vibrating system;
m — the total mass of the conveyor (includes the vibrator mass);
my — the total eccentric masses;

k — elasticity coefficient of the conveyor’s steel springs;

b — the dissipation coefficient (that include the damping of the eaves’ seat and the
equivalent dissipation of the transported material);

Z — the vibrating direction;

z —the displacement of the conveyor’s eaves;

z,, — displacement of unbalanced/eccentric masses;

¢ — rotation angle of the eccentric masses;
o — rotation velocity of the eccentric masses.

¥

1 T T 1
Fig. 1 Simplified principle model Fig. 2 Mechanical 1DOF model
of the inertial vibrating conveyor with nonlinear damping

The measured and/or the calculated data of the real inertial vibrating conveyor used to
numerical simulation are:
e+m =250Kg - the total vibrating mass of the conveyor (measured)
ok =3x10° Nm~! - the coefficient of elasticity of steel springs (measured)

ob=12x10°Nsm™! - the equivalent coefficient of dissipation (calculated)
¢n =948rpm - the rotational speed of eccentric masses (measured)

¢ ' =15.8Hz - the frequency of inertial excitation (calculated)

0 =99.27rad /s - the pulsation of inertial excitation (calculated)

*myr =1.2583Kgm - the static moment of the eccentric masses (calculated)
¢ Fy=12.4kN - the amplitude of one direction inertial force (calculated)

The calculated data of the inertial vibrating conveyor modeled as a linear viscous
elastic mechanical system are:

» f, =5.513Hz - the eigenfrequency of the conveyor

»b., =1 7320.5Nsm™! - the critical value of the damping coefficient
» n=24rad /s -the damping factor; £ =0.6928 - the linear damping ratio
» A =5.033mm - the steady-state forced vibration amplitude)
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3.DYNAMIC ANALYSIS OF THE 1DOF MECHANICAL ELASTIC SYSTEM
WITH POLYNIMIAL DAMPING

3.1.Mathematical model - linear damping

The steady-state vibrations equations of the conveyor driven by the inertial vibrator

are
{mé +bzi+kz= morcoz cos ot )
My = mor(g - z) Sin ot ’
where M, is the necessary motor moment and g = 9.8/m/ s2.
First eq. from (4) can be written as follows
Z+2nz+ pzz = ur(nz cosQ , %)

where: n = b is the damping factor
m

p= \/E - the eigenpulsation of the 1DOF linear system
m

m : :
n=—C - dimensionless unbalanced mass
m

¢@ = ot - angular displacement of the rotary unbalanced masses

The forced steady-state vibration of the conveyor is described by the particular
solution of eq. (5) as follows

Zp= Af cos(mt - (p()) , (6)
where the amplitude is

2
r®
Ay = £ (7)
\/(p2 —(92)2 +4n’w?
and the phase shift between harmonic inertial force and the conveyor vibration is:
@ = arctan 22noa 3 (®)
p -

From the second eq. of (4), we can write the necessary motor moment M, as
follows:

My, = m()rlg + Afmz cos(wt — @y )Jsin ot 9

Taking into considerations the mathematical expressions of the amplitude and phase
shift (7) and (8), the necessary motor moment M, becomes:

mour20)4

2[(p2—0)2)2+4n20)2}
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The differential mechanical work of the motor dW can be written

dW =M ypdo =My 0dt (11)
and the mechanical work for an entire oscillation cycle can be written as follows:
2n
2n 2n
Weycte = IdW IMMd(p IMMoadt (12)
0 0

With the expression (10) of the motor moment A, , the mechanical work for a cycle
becomes after integration as follows:

W 27 (mor 5

e 7 =0 s ano?|

The average necessary motor moment M ,,, and the average power F,,, can be

(13)

calculated as follows:

W 5
M pfayg = —22 = (mgr)*no (14)
2n {(p - )2+4n }
6
P, (myr ) (15)

Vg :(DMMavg
{(p )2+4n ® }

3.2.Mathematical model - nonlinear damping

In order to make a qualitative and quantitative analysis of the dynamic parameters of
the 1DOF mechanical system with nonlinear damping, we consider differential moving eq.
from (4), where the nonlinear damping coefficient is polynomial type as follows [23]

b=by+ Shl . (16)
i=1

where: b)) is the coefficient of linear damping

b; i=10 - the coefficients of nonlinear polynomial damping (dissipations

proportional to velocity integer exponents).

For qualitative evaluation of the dynamics of the 1DOF system with nonlinear
damping, we consider, in first approximation, that the steady-state vibration is harmonic with
the same frequency as the inertial force:
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zf = A cos ot (17)

The modulus of the velocity can be written as follows

|z’f|: Aolsinot] (18)
where the function |sin cot| is periodic (with the period T =n/®) and we can write it also
not pt. 2kn<ot<(2k+1)n
|sin OJt| = sm. P ( ) keZ (19)
—sinot  pt. Ck+In<ot<2(k+1)n
the function from (19) can be decomposed into a Fourier series as follows:
. 2 42 .
f(t)=|smmt|=———z cos 2iot (19)

T m4i% — ]

Because the coefficients of the harmonic functions rapidly decrease to the i index, we
consider only first four terms from the Fourier series as follows:

|sinc0t|z£—i icos2mt+icos4mt+icos6mt (20)
T m\3 15 35

With the approximation (20), the expression of the velocity’ modulus becomes

|z’f|za0 +ay cos2ot+ay cos4ot+ag cos6ot (21)

where the coefficients a,; j= 0,3 are as follows:

24w

4A®
ap = -

I5n

_4Am
357

4 _4Am
T 2 3n

ay =

ag =

Taking into consideration only four terms for the polynomial damping coefficient

2/ =y byl |+ by + oz | 22)

3
brby+ b
i=1
and the modulus of the velocity done by (21), the global damping coefficient can be written as

follows:

b=by+b;(ag+a, cos 20t +ay cos 4ot +ag cos6ot)+by(ay +a, cos 20t +
(23)
+ay cosdot+ag cos60)t)2 +bs(ag +a, cos 20t +ay cosdot +ag cos6(ot)3
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The square of the modulus of the velocity can be written
6

z'jzf =(ap +a, cos 20t +ay cos 4ot +ag cos 603t)2 = Y cyicosiot , (24)
i=0
where the coefficients ¢,; j=0,6 are as follows:
) =a5+0,5(a§+a§+ag) ¢y =2apay+aray+ayag
cy =0,5a§ +2apay +ajag cg =2apag +asray
cg =0,5a5+a2a6 clp =aya4 012=0,5ag
The cube of the modulus of the velocity can be written
.3 3 2 .
|Zf| =(ag +a; cos 20t +ay cos4ot+ag cos6ot) = Y.d; cos 2iot (25)

i=0
where the coefficients d,; j= 0,9 are as follows:
dy = ag +0,5a0a§ +1,5a0a5 +1,5a0a5 +15a5a4a4 +0,75a5a4
dy= 3aga2 + 1,5a2ag +3apayag +1,5a§a6 +3aparay +0,75a5a6 +],5a2a5 +0,75a§
dy= 3a3a4 +1,5a4ag +3apajrag +1,5a0a§ +15aa a4 +I,5a§a4 +0,75a43
dg =3ajag +15a3ag+15a3as +3agara, +1.5a5a3 +0,25a3 +075a}
dg =3apajzag +0,75a4ag +15asaa4 +1,5a0a42, +0,75a§a4
djg =3apagas + 0,75a2a§ +0,75a5a6 +0,75a2aj
d;y=15aga} +15a5a,a5+0.25a;
dy=075a5a2 +075a5a,
djgs =0,75a4ag
dg=0.25a}

With the expressions (24) and (25) of the exponents of the modulus of the velocity, the
damping coefficient (23) becomes

b= %egi cos 2iot (25)
i=0
where the coefficients e;; j = 0,9 are as follows:
eyp =by +bjay +bycy+bsdy
er=bjay+bycr)+bs3d,
ey =bjay+bycy+b3dy
es =bjag +bycs +bsdg
eg =bycg +bsdg
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ejg =byerg+bsdpg
erp =bycip+bzdp

ey =bsdyy
ejg =bzds
ejg =bsdyg

The nonlinear resistance force acc. to polynomial damping coefficient (25) becomes

9
Fp =-bz=Awsinwt ) e,; cos 2iot (26)
i=0

or, after trigonometric transformations

9
Fr ==Y Fy, sin(2i+ 1ot , (27)
i=0

where odd index coefficients are as follows:

F1=7(€2—2€0) F2i+1:7(62i_62i+2) =18 Flg=——res  (28)

Taking into consideration the nonlinear resistance force done by (27), the differential
moving eq. becomes

mi—Fp+kz= mor(o2 cosot (29)
or:
2 2
mz+ Y Fy;ypsin(2i+ ot + kz = myro® cos ot (30)
i=0

Since we have considered only four terms for the polynomial damping coefficient and
four terms for the Fourier series of the modulus of the velocity, the resistance force done by
(27) has only ten terms. Theoretical, the resistance force has an infinite number of harmonic
odd index order terms as follows:

o0 o0
Fr ==Y Foipysin(2i+1)ot ==Y F; sin jot @31
i=0 Jj=1

Taking into consideration only first n+ / (significant) terms of the resistance force,
the eq. (30) becomes as follows:

mz+ Fj sinmt+kz:m0rm2 cos ot — F3 sin30t — Fs sinSot —...— Fo,y sin(2n+ Hot  (32)

It can see that the right side of the eq. (32) contains not only the harmonic force with
the pulsation ® (due to the inertial vibratory) but also harmonic forces with pulsations
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(2i + o i=1n; that’s why, we can say that the mechanical elastic system with

polynomial dissipation excited by harmonic forces is self excited on the odd index
superior harmonic frequencies/pulsations.

4.NONLINEARITY INDEXES

Considering for the 1DOF mechanical system with polynomial damping the
differential eq. (32), the forced steady-state motion is composed from the harmonic vibration

n
2(1)= Y Ag ppp sin(2i+ Dot = ¢ 344] » (33)
i=0

where: Ay 5y i= 0,n are the spectral harmonic amplitudes of the steady-state vibration
Qg 1 =0,n - the phase shifts between harmonic inertial force and the spectral
vibration

4.1.Nonlinearity index of spectral amplitudes

In order to appreciate the nonlinearity of a mechanical system with polyharmonical
steady-state vibrating movement, we can compare the amplitude of the vibration on
fundamental pulsation ®» with the amplitudes of the vibration on superior spectral pulsations

(2i+1)o) i=1n; for this comparison we introduce the nonlinearity index of amplitude
defined as follows

AsH; _
1A,2i+1=100% 1% i=Tn, (33)
f1

where 1 45,7 i= I,n is the nonlinearity index of spectral amplitude of 2i + 1 order.

4.2. Nonlinearity index of spectral power

In order to highlight how the power influences the degree of nonlinearity of the
system, we can write the mechanical work of the motor for a complete period 7 =2n/®
function of forced steady/state vibration amplitude as follows:

2 2 2 .
Weyete = |, "M yydo = I nmor[g +Aro cos(p— @y )]sm odo (34)
After the calculus of the definite integrale, the mechanical work becomes

W,

eyele = nm()rAfmZ Sin @ (35)

or, taking into consideration the expression (8) of the phase shift:
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2n(myr)nd o’
cycle / (36)
\/ (p - )2 +4n° o’
The average power can be obtained as follows:
/4 myrnd ro?
Py, = cycle ( 0 ) f (37)

£ \/(pz_mz)z+4n2®2
0

For the steady-state vibration of the mechanical systems with polynomial damping, the
average spectral powers can be written function of spectral amplitudes 4 5;,; and spectral

damping factor n,;,; as follows:

(mrInsis 1Ay 2ie (20 + ol

21+1avg
\/{pz [(2i + 1)) }2+4n§l~+1[(2i+])(9]2

We can compare the spectral powers dividing each of them by the fundamental
pulsation power as follows:

i=0,n (38)

N1 4r i \/(02—0)2 +4niw’ —
(2 +1) 2i+14f,2i+1 )2 1 i=1n (39)

Plavg nidys 1\/ {p2 —[2i+ Do }2 +4n3,(2i+ Do

P21+]avg

Usually, the vibratory technological equipment work far off resonance, with

®w=3+5p (where p is the natural pulsation), so we can approximate [(21' + 1)03]2 >> p2 .In
this case, the relation (39) becomes:

P21+1avg (2 +1)3 n2is 14241 \/[( o)2+4n12 =1n (40)

P]avg nyA; 2i+1)m]2 +4n§,~+1

Considering that the square of the spectral pulsations are much bigger than the square

of the spectral damping factors [(2i + / )03]2 >> ”gi 41 the fraction (40) is more simple:

Privlavg _ (2i+ 1) noiv 14y 2iv

i=1n (41)
P]avg n]AI

In the case of spectral damping factors with close values, we can write:
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Py, Ay 5 —
2i+lavg ~ (2i+1)2 f.2i+1 i=In (42)
P]avg AI

The nonlinearity index of spectral power is defined as follows:

P> .
Ip,z,-+1=100—2’1”‘”g [%] i=1n, @3)
avg

Taking into consideration (33), the relationship between the indexes are as follows:

. 2 -
Ipoivy=2i+1) 15y i=1n (44)

S.CONCLUSIONS

The nonlinear mechanical elastic system with polynomial dissipation excited by
harmonic forces is self excited on the odd index superior harmonic frequencies/pulsations.
The defined nonlinearity indexes can give a quantitative estimate of the size of the
nonlinearity of the system. These indexes can be calculate only after a spectral analysis of the
mechanical system vibration is done.
The spectral analysis can be done by:
-numerical simulation for the systems with known linear and nonlinear
characteristics;
-instrumental analysis (real/virtual instruments, analog hardware and/or digital
software) of experimental data.
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