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Abstract: This article is an approach of the forced steady-state vibrations of the nonlinear 
mechanical elastic systems with polynomial damping. The damping coefficient has a 
polynomial variation function of velocity. The differential equation of the movements of the
non-linear 1DOF system can be solved only using numerical method, e.g. a programme based
on the algorithm Runge-Kutta IV for the numerical integration. The study introduce two 
quantitative indexes of nonlinearity, the nonlinearity index of spectral amplitudes and the 
nonlinearity index of spectral power, in order to indicate how much is the nonlinearity of the
system.
Keywords: nonlinear mechanical system, 1DOF, polynomial damping, nonlinearity index

Rezumat: Lucrarea propune un studiu al vibrațiilor forțate a sistemelor mecanice elastice 
neliniare cu amortizare vâscoasă polinomială. Coeficientul de amortizare are o variație 
polinomială funcție de viteză. Ecuația diferențială a vibrațiilor forțate ale sistemului neliniar
cu un grad de libertate poate fi rezolvată numai folosind o metodă numerică de integrare
numerică, de exemplu un program bazat pe algoritmul Runge-Kutta de ordinul IV. Studiul
introduce doi indici cantitativi de evaluare a neliniarității mișcării și anume: indicele de 
neliniaritate al amplitudinilor spectrale și indicele de neliniaritate al puterii spectralei.
Cuvinte cheie: sistem mecanic neliniar, 1DOF, amortizare polinomială, index de neliniaritate

  1. INTRODUCTION. MATHEMATICAL MODEL OF POLYNOMIAL 
DAMPING

  The usual dynamics approaches of vibrating machines and equipment consider that the 
mechanical system (finite DOF with) has discrete components (masses, dampers and elastic 
springs with linear behavior [1] [2] [3] [4] [5] [6] [7]. But, there are a lot of situations, when
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the linear/linearized model of the vibrating systems cannot explain some resonance 
phenomena at the superior or inferior frequencies than the driving vibrator frequency or the 
necessity to supercharge the motor of the vibrator. In this case, a model of the system with 
nonlinear elasticity and/or damping can lead to some theoretical results more accurate [8] [9]. 
 Physical and mathematical modeling of linear elastic mechanical systems leads to the 
second order differential equations, linear, with constant coefficients. These equations which 
model with small enough errors the dynamic behavior of the system are the result of 
simplifying assumptions involving structural and geometric linearity of the mass/inertia, 
elasticity and damping [10] [11]. 
 Nonlinear differential equation of an autonomous 1DOF mechanical system has the 
general form [12] 

       tFqq,qcqq,qbqq,qa    ,      (1) 
 
where: q/q/q   are generalized coordinate/velocity/acceleration 

  q,qa   - inertial coefficient 

  q,qb   - damping coefficient 

  q,qc   - elasticity coefficient 
 In most cases, the nonlinear mechanical elastic systems have constant inertial 
characteristics (mass, moments of inertia), nonlinear behavior being given by dissipative and 
elastic elements [13]. In general, nonlinearities of elasticity occurs in elastic-force strain 
relationship and the relationship between strain rate and dissipative force resistance element 
requires linear or nonlinear damping behavior [14] [15] [16] [17]. Under these conditions, 
damping coefficient is a function of speed and stiffness coefficient is a function of elongation 
nonlinear and the differential equation system has the form [18] [19] [20]: 
 

     tFqqcqqbqa    ,      (2) 
 
 For a mechanical elastic 1DOF system with nonlinear damping only, the differential 
equation of forced vibration is as follows: 
 

   tFcqqqbqa    ,      (3) 
 
 For the technical and technological mechanical systems, the dissipative nonlinear 
behavior is determined by the connecting elements made from neoprene, hydraulic and hydro-
pneumatic shock absorbers or by the interaction between the work equipment and 
environment. 
 
 2. 1DOF MECHANICAL ELASTIC SYSTEM WITH POLYNOMIAL 
DAMPING. PHYSICAL MODEL 
 
 Figure 1 shows the simplified model of an inertial vibrator conveyor, with the next 
notations: 1 – the sieve, 2 – the transporter basis, 3 – the elastic support system (steel bending 
plates), 4 – the inertial vibrator (where 0m  is the total unbalanced mass). 

 Figure 2 shows the model of the conveyor driven by an inertial vibrator with two 
eccentric synchronized masses [21] [22]. It has to specify that the model from the figure 2 is 
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the vertical plane projection of the real model from figure 1. The used notations are: 
C – the mass center of the vibrating system; 
m  – the total mass of the conveyor (includes the vibrator mass); 

0m  – the total eccentric masses; 

k  – elasticity coefficient of the conveyor’s steel springs; 
b  – the dissipation coefficient (that include the damping of the eaves’ seat and the 
equivalent dissipation of the transported material); 
Z  – the vibrating direction; 
z  – the displacement of the conveyor’s eaves; 

mz  – displacement of unbalanced/eccentric masses; 

  – rotation angle of the eccentric masses; 
  – rotation velocity of the eccentric masses. 
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Fig. 1 Simplified principle model 
of the inertial vibrating conveyor 

 
Fig. 2 Mechanical 1DOF model 

with nonlinear damping 
 
 The measured and/or the calculated data of the real inertial vibrating conveyor used to 
numerical simulation are: 

♦ Kg250m   - the total vibrating mass of the conveyor (measured) 

♦ 15 Nm103k   - the coefficient of elasticity of steel springs (measured) 

♦ 13 Nsm1012b   - the equivalent coefficient of dissipation (calculated) 
♦ rpm948n   - the rotational speed of eccentric masses (measured) 
♦ Hz8.15f   - the frequency of inertial excitation (calculated) 
♦ s/rad27.99  - the pulsation of inertial excitation (calculated) 
♦ Kgm2583.1rm0   - the static moment of the eccentric masses (calculated) 

♦ kN4.12F0   - the amplitude of one direction inertial force (calculated) 

 The calculated data of the inertial vibrating conveyor modeled as a linear viscous 
elastic mechanical system are: 

► Hz513.5fn   - the eigenfrequency of the conveyor 

► 1
cr Nsm5.17320b   - the critical value of the damping coefficient 

► s/rad24n   - the damping factor; 6928.0  - the linear damping ratio 

► mm033.5Ast   - the steady-state forced vibration amplitude) 
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 3.DYNAMIC ANALYSIS OF THE 1DOF MECHANICAL ELASTIC SYSTEM 
WITH POLYNIMIAL DAMPING 
 
 3.1.Mathematical model - linear damping 
 
 The steady-state vibrations equations of the conveyor driven by the inertial vibrator 
are 

 








tsinzgrmM

tcosrmkzzbzm

0M

2
0




 ,     (4) 

where MM  is the necessary motor moment and 2s/m81.9g  . 
 First eq. from (4) can be written as follows 

 cosrzpzn2z 22  ,    (5) 

where: 
m2

b
n   is the damping factor 

 
m

k
p   - the eigenpulsation of the 1DOF linear system 

 
m

m0  - dimensionless unbalanced mass 

 t  - angular displacement of the rotary unbalanced masses 
 The forced steady-state vibration of the conveyor is described by the particular 
solution of eq. (5) as follows 

 0ff tcosAz   ,      (6) 

where the amplitude is 

  22222

2

f

n4p

r
A




       (7) 

and the phase shift between harmonic inertial force and the conveyor vibration is: 
 

220
p

n2
arctan




        (8) 

 
 From the second eq. of (4), we can write the necessary motor moment MM  as 
follows: 

   tsintcosAgrmM 0
2

f0M      (9) 

 
 Taking into considerations the mathematical expressions of the amplitude and phase 
shift (7) and (8), the necessary motor moment MM  becomes: 

 
    tcos21n2t2sinp

n4p2

rm
tsinrgmM 222

22222

42
0

0M 





 


  (10) 
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 The differential mechanical work of the motor dW  can be written 
 

dtMdMdW MM        (11) 
 
and the mechanical work for an entire oscillation cycle can be written as follows: 








2

0
M

2

0
M

2

0
cycle dtMdMdWW     (12) 

 
 With the expression (10) of the motor moment MM , the mechanical work for a cycle 
becomes after integration as follows: 
 

 

  



 




22222

52
0

cycle
n4pm

nrm2
W      (13) 

 
 The average necessary motor moment MavgM  and the average power avgP  can be 

calculated as follows: 
 

 
  



 







22222

52
0cycle

Mavg
n4pm

nrm

2

W
M    (14) 

 
  



 




22222

62
0

Mavgavg
n4pm

nrm
MP     (15) 

 
 3.2.Mathematical model - nonlinear damping 
 
 In order to make a qualitative and quantitative analysis of the dynamic parameters of 
the 1DOF mechanical system with nonlinear damping, we consider differential moving eq. 
from (4), where the nonlinear damping coefficient is polynomial type as follows [23] 
 







1i

i
i0 zbbb   ,       (16) 

 
where: 0b  is the coefficient of linear damping 

  ,1ibi  - the coefficients of nonlinear polynomial damping (dissipations 

proportional to velocity integer exponents). 
 For qualitative evaluation of the dynamics of the 1DOF system with nonlinear 
damping, we consider, in first approximation, that the steady-state vibration is harmonic with 
the same frequency as the inertial force: 
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tcosAz f          (17) 

 
 The modulus of the velocity can be written as follows 
 

tsinAz f   ,       (18) 

 
where the function tsin  is periodic (with the period  /T ) and we can write it also 

 
    








 k
1k2t1k2.pttsin

1k2tk2.pttsin
tsin    (19) 

 
 the function from (19) can be decomposed into a Fourier series as follows: 
 

ti2cos
1i4

142
tsin)t(f

1i
2







 



     (19) 

 
 Because the coefficients of the harmonic functions rapidly decrease to the i  index, we 
consider only first four terms from the Fourier series as follows: 
 







 





 t6cos

35

1
t4cos

15

1
t2cos

3

142
tsin    (20) 

 
 With the approximation (20), the expression of the velocity’ modulus becomes 
 

t6cosat4cosat2cosaaz 6420f   ,    (21) 

 

where the coefficients 3,0ja j2   are as follows: 

 

  




A2

a0  




3

A4
a2  





15

A4
a4  





35

A4
a6  

 
 Taking into consideration only four terms for the polynomial damping coefficient 
 

3
f3

2
f2f10

3

1i

i
fi0 zbzbzbbzbbb   


     (22) 

 
and the modulus of the velocity done by (21), the global damping coefficient can be written as 
follows: 
 

  
  364203
2

64

202642010

t6cosat4cosat2cosaabt6cosat4cosa

t2cosaabt6cosat4cosat2cosaabbb




 (23) 
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 The square of the modulus of the velocity can be written 

  



6

0i
i2

2
6420

2
f ti2cosct6cosat4cosat2cosaaz  , (24) 

where the coefficients 6,0jc j2   are as follows: 

 

   2
6

2
4

2
2

2
00 aaa5,0ac    6442202 aaaaaa2c   

  6240
2
24 aaaa2a5,0c    42606 aaaa2c   

  62
2
48 aaa5,0c    6410 aac    2

612 a5,0c   

 
 The cube of the modulus of the velocity can be written 
 

  



9

0i
i2

3
6420

3
f ti2cosdt6cosat4cosat2cosaaz  ,  (25) 

where the coefficients 9,0jd j2   are as follows: 

 4
2
2642

2
40

2
20

2
60

3
00 aa75,0aaa5,1aa5,1aa5,1aa5,0ad   

 3
2

2
426

2
44206

2
2640

2
622

2
02 a75,0aa5,1aa75,0aaa3aa5,1aaa3aa5,1aa3d   

 3
44

2
2642

2
20620

2
644

2
04 a75,0aa5,1aaa5,1aa5,1aaa3aa5,1aa3d   

 3
6

3
2

2
424206

2
46

2
26

2
06 a75,0a25,0aa5,1aaa3aa5,1aa5,1aa3d   

 4
2
2

2
40642

2
646208 aa75,0aa5,1aaa5,1aa75,0aaa3d   

 2
426

2
2

2
6264010 aa75,0aa75,0aa75,0aaa3d   

 3
4642

2
6012 a25,0aaa5,1aa5,1d   

 6
2
4

2
6214 aa75,0aa75,0d   

 2
6416 aa75,0d   

 3
618 a25,0d   

 
 With the expressions (24) and (25) of the exponents of the modulus of the velocity, the 
damping coefficient (23) becomes 
 





9

0i
i2 ti2coseb  ,        (25) 

where the coefficients 9,0je j2   are as follows: 

 03020100 dbcbabbe   

 2322212 dbcbabe   

 4342414 dbcbabe   

 6362616 dbcbabe   

 83828 dbcbe   
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 10310210 dbcbe   

 12312212 dbcbe   

 14314 dbe   

 16316 dbe   

 18318 dbe   

 
 The nonlinear resistance force acc. to polynomial damping coefficient (25) becomes 
 





9

0i
i2R ti2cosetsinAzbF   ,      (26) 

 
or, after trigonometric transformations 
 

 


 
9

0i
1i2R t1i2sinFF  ,       (27) 

 
where odd index coefficients are as follows: 

 021 e2e
2

A
F 


    8,1iee

2

A
F 2i2i21i2 


   1819 e

2

A
F


  (28) 

 
 Taking into consideration the nonlinear resistance force done by (27), the differential 
moving eq. becomes 

tcosrmkzFzm 2
0R   ,       (29) 

or: 

  tcosrmkzt1i2sinFzm 2
0

9

0i
1i2  


  ,     (30) 

 
 Since we have considered only four terms for the polynomial damping coefficient and 
four terms for the Fourier series of the modulus of the velocity, the resistance force done by 
(27) has only ten terms. Theoretical, the resistance force has an infinite number of harmonic 
odd index order terms as follows: 
 

  







 

1j
j

0i
1i2R tjsinFt1i2sinFF  ,     (31) 

 
 Taking into consideration only first 1n   (significant) terms of the resistance force, 
the eq. (30) becomes as follows: 
 

  t1n2sinFt5sinFt3sinFtcosrmkztsinFzm 1n253
2

01    (32) 

 
 It can see that the right side of the eq. (32) contains not only the harmonic force with 
the pulsation   (due to the inertial vibratory) but also harmonic forces with pulsations 
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  n,1i1i2  ; that’s why, we can say that the mechanical elastic system with 
polynomial dissipation excited by harmonic forces is self excited on the odd index 
superior harmonic frequencies/pulsations. 
 
 
 4.NONLINEARITY INDEXES 
 
 Considering for the 1DOF mechanical system with polynomial damping the 
differential eq. (32), the forced steady-state motion is composed from the harmonic vibration 
 

    


 
n

0i
1i21i2,f t1i2sinAtz  ,    (33) 

where: 1i2,fA   n,0i   are the spectral harmonic amplitudes of the steady-state vibration 

 1i2   n,0i   - the phase shifts between harmonic inertial force and the spectral 

vibration 
 
 4.1.Nonlinearity index of spectral amplitudes 
 
 In order to appreciate the nonlinearity of a mechanical system with polyharmonical 
steady-state vibrating movement, we can compare the amplitude of the vibration on 
fundamental pulsation   with the amplitudes of the vibration on superior spectral pulsations 

  n,1i1i2  ; for this comparison we introduce the nonlinearity index of amplitude 
defined as follows 
 

[%]
A

A
100I

1f

1i2,f
1i2,A


   n,1i   ,     (33) 

where 1i2,AI   n,1i   is the nonlinearity index of spectral amplitude of 1i2   order. 

 
 4.2. Nonlinearity index of spectral power 
 
 In order to highlight how the power influences the degree of nonlinearity of the 
system, we can write the mechanical work of the motor for a complete period  /2T  
function of forced steady/state vibration amplitude as follows: 
 

  
  2

0 0
2

f0
2
0 Mcycle dsincosAgrmdMW    (34) 

 
 After the calculus of the definite integrale, the mechanical work becomes 
 

0
2

f0cycle sinrAmW          (35) 

 
or, taking into consideration the expression (8) of the phase shift: 
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 

  22222

3
f0

cycle

n4p

nArm2
W




        (36) 

 
 The average power can be obtained as follows: 
 

 

  22222

4
f0cycle

avg

n4p

nArm

2

W
P









       (37) 

 
 For the steady-state vibration of the mechanical systems with polynomial damping, the 
average spectral powers can be written function of spectral amplitudes 1i2,fA   and spectral 

damping factor 1i2n   as follows: 

 

    

      22
1i2

222

4
1i2,f1i20

avg1i2

1i2n41i2p

1i2Anrm
P









  n,0i     (38) 

 
 We can compare the spectral powers dividing each of them by the fundamental 
pulsation power as follows: 
 

   
      22

1i2
222

1f1

22
1
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

  n,1i   (39) 

 
 Usually, the vibratory technological equipment work far off resonance, with 

p53  (where p  is the natural pulsation), so we can approximate    22 p1i2  . In 
this case, the relation (39) becomes: 
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  n,1i     (40) 

 
 Considering that the square of the spectral pulsations are much bigger than the square 

of the spectral damping factors    2
1i2

2 n1i2  , the fraction (40) is more simple: 

 

 
11

1i2,f1i22
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avg1i2

An

An
1i2

P

P    n,1i        (41) 

 
 In the case of spectral damping factors with close values, we can write: 
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 
1

1i2,f2
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A

A
1i2
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P    n,1i        (42) 

 
 The nonlinearity index of spectral power is defined as follows: 
 

[%]
P

P
100I

avg1

avg1i2
1i2,P


   n,1i   ,      (43) 

 
 Taking into consideration (33), the relationship between the indexes are as follows: 
 

  1i2,A
2

1i2,P I1i2I    n,1i         (44) 

 
 
 5.CONCLUSIONS 
 
 The nonlinear mechanical elastic system with polynomial dissipation excited by 
harmonic forces is self excited on the odd index superior harmonic frequencies/pulsations. 
 The defined nonlinearity indexes can give a quantitative estimate of the size of the 
nonlinearity of the system. These indexes can be calculate only after a spectral analysis of the 
mechanical system vibration is done. 
 The spectral analysis can be done by: 

-numerical simulation for the systems with known linear and nonlinear 
characteristics; 
-instrumental analysis (real/virtual instruments, analog hardware and/or digital 
software) of experimental data. 
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